Extensions 1→N→G→Q→1 with N=C23 and Q=C3xQ8

Direct product G=NxQ with N=C23 and Q=C3xQ8
dρLabelID
Q8xC22xC6192Q8xC2^2xC6192,1532

Semidirect products G=N:Q with N=C23 and Q=C3xQ8
extensionφ:Q→Aut NdρLabelID
C23:1(C3xQ8) = C3xC23:Q8φ: C3xQ8/C6C22 ⊆ Aut C2396C2^3:1(C3xQ8)192,826
C23:2(C3xQ8) = C3xC23:2Q8φ: C3xQ8/C6C22 ⊆ Aut C2348C2^3:2(C3xQ8)192,1432
C23:3(C3xQ8) = C2xQ8xA4φ: C3xQ8/Q8C3 ⊆ Aut C2348C2^3:3(C3xQ8)192,1499
C23:4(C3xQ8) = C6xC22:Q8φ: C3xQ8/C12C2 ⊆ Aut C2396C2^3:4(C3xQ8)192,1412

Non-split extensions G=N.Q with N=C23 and Q=C3xQ8
extensionφ:Q→Aut NdρLabelID
C23.1(C3xQ8) = C3xC4.10C42φ: C3xQ8/C6C22 ⊆ Aut C23484C2^3.1(C3xQ8)192,144
C23.2(C3xQ8) = C3xC23.9D4φ: C3xQ8/C6C22 ⊆ Aut C2348C2^3.2(C3xQ8)192,148
C23.3(C3xQ8) = C3xC23.Q8φ: C3xQ8/C6C22 ⊆ Aut C2396C2^3.3(C3xQ8)192,829
C23.4(C3xQ8) = C3xC23.4Q8φ: C3xQ8/C6C22 ⊆ Aut C2396C2^3.4(C3xQ8)192,832
C23.5(C3xQ8) = C3xM4(2).C4φ: C3xQ8/C6C22 ⊆ Aut C23484C2^3.5(C3xQ8)192,863
C23.6(C3xQ8) = A4xC4:C4φ: C3xQ8/Q8C3 ⊆ Aut C2348C2^3.6(C3xQ8)192,995
C23.7(C3xQ8) = C3xC4.C42φ: C3xQ8/C12C2 ⊆ Aut C2396C2^3.7(C3xQ8)192,147
C23.8(C3xQ8) = C3xC23.7Q8φ: C3xQ8/C12C2 ⊆ Aut C2396C2^3.8(C3xQ8)192,813
C23.9(C3xQ8) = C3xC23.8Q8φ: C3xQ8/C12C2 ⊆ Aut C2396C2^3.9(C3xQ8)192,818
C23.10(C3xQ8) = C6xC8.C4φ: C3xQ8/C12C2 ⊆ Aut C2396C2^3.10(C3xQ8)192,862
C23.11(C3xQ8) = C6xC2.C42central extension (φ=1)192C2^3.11(C3xQ8)192,808
C23.12(C3xQ8) = C2xC6xC4:C4central extension (φ=1)192C2^3.12(C3xQ8)192,1402

׿
x
:
Z
F
o
wr
Q
<